
THE DEVELOPMENT OF THE POTENTIAL AND ACADEMIC PROGRAMMES OF WROCŁAW UNIVERSITY OF
TECHNOLOGY

EUROPEAN
UNION

EUROPEAN
SOCIAL FUND

Internet Engineering

Paweł Głuchowski

Information Systems Analysis

Temporal Logic in System Analysis

(corrected version, 2013)

Project co-financed by European Union within European Social Fund

THE DEVELOPMENT OF THE POTENTIAL AND ACADEMIC PROGRAMMES OF WROCŁAW UNIVERSITY OF
TECHNOLOGY

EUROPEAN
UNION

EUROPEAN
SOCIAL FUND

Instruction to the 1st laboratory assignment of Temporal Logic in System Analysis

Subject: LTL logic and system properties description.

During this assignment you will practise:

• drawing a representation of given LTL formulas in linear time structures,

• writing LTL formulas representing given linear time structures,

• specifying properties of a given program in LTL.

Tutorial for exercises 1 and 2:

Picture 1 (below) presents a linear time structure.

The structure consists of big points and arrows joining them together in a line. The
points are described by symbols like si and by colours. There is also a triple of dots
between some arrows.

Every point represents a state (moment) of the time structure. Above every point
there is the state's symbol and its index (e.g. the state no. 7 would be s7). If a point is
black, then its state is labelled with the value true (meaning that everything is possible
then but false). Another colour represents a formula which is true in this point's state. This
labelling function is explained under the time structure. Usually, instead of using colours,
we write the formulas by the states.

Every arrow represents a transition between states. If an arrow connects two states,
then these states represent the order of two moments, where there is no moment in-
between. If there is a triple of dots between two arrows, then we could place some number
of other states instead of the triple, which all would be the same as the state, from which
the left arrow goes out.

Picture 1.

Picture 1 presents a formula: p ∧ Fq, which is true in the states s0. Let i≥1 (in states'
indexing). If i=1, then clearly the states s1 and si are the same state and are labelled with
true∧q ≡ q. If i=2, then there is only one state s1, labelled with true, between states s0 and
si. Otherwise, there is some grater number of states between s1 and si, all labelled like s1,
that is, with true. It is important always to declare relation between the states connected
by the arrows with dots between them.

Exercises

Exercise 1.

Draw linear time structures representing given LTL formulas, where each formula is
true in the state s0. Place symbols of formulas p and q by these states, in which these

Project co-financed by European Union within European Social Fund

THE DEVELOPMENT OF THE POTENTIAL AND ACADEMIC PROGRAMMES OF WROCŁAW UNIVERSITY OF
TECHNOLOGY

EUROPEAN
UNION

EUROPEAN
SOCIAL FUND

formulas are true. The states without formulas’ symbols will be understood as labelled by
„true” (do not write true there).

a) Draw a linear time structure representing the following LTL formula:

X(p ∧ G(p ⇒ Xq ∧ XXXp))

b) Draw a linear time structure representing the following LTL formula:

¬p ∧ pUq ∧ FGq

c) Draw a linear time structure representing the following LTL formula:

pU(Xq) ∧ p

Exercise 2.

Write LTL formulas with symbols: p, q and any logic connectives, to represent given
linear time structures for the following labelling function: b (blue), o (orange), w (white),
true (black). Do not write „true” in the formulas.

a) Write an LTL formula representing the following linear time structure for i>0:

b) Write an LTL formula representing the following linear time structure for i>0 and
j≥i+3:

c) Write an LTL formula representing the following linear time structure for i≥0 and
j>i+2:

Exercise 3.

Specify as many properties as you can for a chosen communication protocol.

Choose one of the following communication protocols that you know the best: FTP,
SSH, Telnet and TLS and do the following:

• Try to describe as many aspects of using the protocol, as you can, in spoken
language and in LTL formulas, where a property or event etc. will be symbolised by a
letter. Make sure first that you know these protocols.

• Try to find the most important properties that must be satisfied by the protocol's
users to ensure a correct use of the protocol. Protocol users are programs rather
than people.

• If it is possible, for every formula draw a linear time structure.

What you are about to do now, will be useful in some of the following assignment,
when you will use a similar temporal language (CTL) to model the use of protocols and
verify its properties automatically.

Project co-financed by European Union within European Social Fund

THE DEVELOPMENT OF THE POTENTIAL AND ACADEMIC PROGRAMMES OF WROCŁAW UNIVERSITY OF
TECHNOLOGY

EUROPEAN
UNION

EUROPEAN
SOCIAL FUND

Instruction to the 2nd and 3rd laboratory assignments of Temporal Logic in System Analysis

Subject: Modelling a system as automata and specifying its
properties in LTL.

During these two assignments you will practise:

• using a tool for modelling, specifying and verifying – UPPAAL,

• modelling given single-process systems as deterministic finite state automata,

• specifying properties of the models in LTL.

Tutorial for the exercises:

In the beginning you need the “UPPAAL 4.0 Small Tutorial”, which you may download
from the official UPPAAL site at www.uppaal.com.

(direct address: www.it.uu.se/research/group/darts/uppaal/small_tutorial.pdf).

To become familiar with the UPPAAL application, please follow all instructions from
chapters 3.1 and 3.2 from the UPPAAL tutorial. It will take some time, but they will teach
you how to use the tool. It is no problem, if you do not understand everything the
automata from the tutorial do. After next assignments you certainly will.

Whenever you find some difficulty in modelling, simulating or verifying your systems
in UPPAAL, feel free to check other chapters of this manual (or other manuals published
there).

Exercises

Exercise 1.

Model given single-process systems as deterministic finite state automata.

To built an automaton for a single-process system, find out what states can these
systems be in, and what transitions between them are possible. Remember: transitions
must be chosen deterministically, so describe the transitions with proper guards and
variable updates.

After you model them, simulate their run to check, whether they work as intended.

a) Model a digital combination lock, that unlocks after choosing a sequence: 1,7,8,3.
The lock reads all 10 digits from 0 to 9 infinitely, until the sequence is read. The correct
sequence may be chosen at any time, that is, after any number of digits not constituting
the sequence. When the sequence is received, the lock unlocks and remains unlocked
forever.

Hint: Use committed states, which are left at the very same moment, that they are
entered.

b) Model a ticket machine, which receives coins, calculates their value and returns a
ticket. There is only one kind of a ticket, hence a user initiates the machine by inserting a
coin. He may insert coins as long as the ticket is not returned. The machine does not
return the rest, if overpaid. Whenever the summary value of coins is greater or equal to
the ticket's price, the machine returns the ticket.

Project co-financed by European Union within European Social Fund

http://www.uppaal.com/
http://www.it.uu.se/research/group/darts/uppaal/small_tutorial.pdf

THE DEVELOPMENT OF THE POTENTIAL AND ACADEMIC PROGRAMMES OF WROCŁAW UNIVERSITY OF
TECHNOLOGY

EUROPEAN
UNION

EUROPEAN
SOCIAL FUND

Notice, that there are many different coins. A user may use at least one coin, and as
many coins as he wants.

Exercise 2.

Specify properties of the models from exercise 1 in LTL logic.

Try to find as many properties of your models, as you can. Especially, you should
consider the following kinds of properties:

• a deadlock of the system is never possible, unless it reaches a final state
(if there is any);

• if some states must be reached to correctly run the process, they will eventually
be reached;

• if some states of the system must not be reached to correctly run the process,
they will never be reached;

• all correct actions of the system may be performed, that is all correct states may
be reached; etc.

Write the properties as LTL formulas without nesting the temporal operators (UPPAAL
has some restrictions yet), and verify all the properties with UPPAAL verifier. If the
verification is not successful, correct your model (automaton) and/or your temporal
formulas.

Hint: Instead of temporal operator G write 'A[]', instead of F write 'E<>', instead of
⇒ write 'imply', instead of ∧ write 'and', and instead of ∨ write 'or'.

Hint: To check the possibility of a deadlock write 'A[] not deadlock'.

Project co-financed by European Union within European Social Fund

THE DEVELOPMENT OF THE POTENTIAL AND ACADEMIC PROGRAMMES OF WROCŁAW UNIVERSITY OF
TECHNOLOGY

EUROPEAN
UNION

EUROPEAN
SOCIAL FUND

Instruction to the 4th and 5th laboratory assignments of Temporal Logic in System Analysis

Subject: Modelling a system as automata and specifying its
properties in CTL.

During these two assignments you will practise:

• modelling a given multiprogram concurrent system as indeterministic finite state
automata,

• specifying properties of the model in CTL,

• modelling and verifying systems that use a communication protocol (from the first
laboratory of temporal logic in system analysis).

Tutorial for the exercises (with yet another exercise inside!):

The goal for each of the exercises is: to build a correct model of a system using more
than one automaton, to specify its properties (e.g. safety, reachability) in CTL logic and to
verify them.

Whenever you find a difficulty in modelling, simulating or verifying your systems in
UPPAAL, fill free to check the UPPAAL manuals from www.uppaal.com.

The following is a simple example (you will have to do much more during the
laboratories) of a system of some programs, that communicate with each other. The
model is made in UPPAAL modeller. Then some properties of the model are specified in
CTL logic, which allows to verify them by the UPPAAL verifier.

Example.

Let us model a simple chat system consisting of two kinds of programs: a user
application U and a server S. There are three instances of user applications: U(1), U(2) and
U(3) and one instance of the server: S. We will model the logging in and out only, where
the following property must be satisfied (apart from the fact that the system must work):
a user may log in or out to the server.

We will create two templates: U for the user application, and S for the server. Write
in the project's system declarations the following: system U, S;

We start by creating a template for a user application. Name it 'U' and write next to
the name a parameter: const N id

Now we want to have three user applications numbered from 0 to 2, so we have to
write the following in the project's declarations: typedef int[0,2] N;

Next build an automaton depicted below in Picture 1, where: names of states are
purple, the state logged_out is initial, communicates sent (!) and received (?) through
channels are light-blue, and id is a user's number. To use the channels, write the following
in the project's declarations:

chan log_me_in[N], log_me_out[N];

broadcast chan welcome[N], bye[N];

A chan is a normal one-to-one communication channel. A broadcast chan is
a one-to-all communication channel.

Project co-financed by European Union within European Social Fund

http://www.uppaal.com/

THE DEVELOPMENT OF THE POTENTIAL AND ACADEMIC PROGRAMMES OF WROCŁAW UNIVERSITY OF
TECHNOLOGY

EUROPEAN
UNION

EUROPEAN
SOCIAL FUND

Picture 1. User interface 'U' template

Now we may build the server automaton. Create a new template, name it 'S', and
built an automaton depicted below in Picture 2. The server might have one state only
(idle), but to perform more than one operation of the same kind (e.g. handling of two
communicate), we need one transition for each. This is possible by using the committed
states, marked 'c'.

In sent and received communicates, the selection of a 'U' instance is done by the
transition's select property (brown colour). For example, if the server receives
a communicate log_me_in from U(1), then it stores the user's number in 'n' (here, n:=1),
which allows the server to send a communicate welcome[n]! welcoming the logging-in of
U(n), that is U(1).

Picture 2. Server 'S'

Our system does not fully handle the bye communicate broadcasting yet. How would
you model that? Do it as yet another exercise.

For our system we can specify at least the following properties and verify them:

• The system cannot be deadlocked: A[] not deadlock

• Every user may log in, e.g.: E<> forall (i : N) U(i).logged_in

etc.

Notice, that nesting of temporal operators is not allowed in UPPAAL yet, which
narrows our opportunities of the verification process. Other tools may not have this
restriction, but you would have to learn their automata declaration languages, instead of
building them graphically.

Project co-financed by European Union within European Social Fund

THE DEVELOPMENT OF THE POTENTIAL AND ACADEMIC PROGRAMMES OF WROCŁAW UNIVERSITY OF
TECHNOLOGY

EUROPEAN
UNION

EUROPEAN
SOCIAL FUND

Exercises

Exercise 1.

Model a system that uses the communication protocol you described in the exercise
3 of the first assignment of temporal logic in system analysis.

You have already specified the system and its properties in the spoken language.
Now model the system as automata, and write the properties as CTL formulas. Verify as
many properties, as possible, in UPPAAL. Try to manually “verify” the rest in simulation.

Summary – you shall:

• build an indeterministic automata model with clocks, channels etc. and simulate it
to ensure the proper use of the system's protocol;

• formulate as many safety and reachability properties of the system in CTL logic, as
you can; formulating other properties would also be nice;

• automatically verify as many properties, as possible; verification must be
successful, according to the protocol.

• try to verify all the other properties by simulation.

If the verification is not successful, correct your automata and/or temporal formulas.

The teacher may give you other orders, so that you learned everything, that the
laboratories allow.

Hint: To write the formula AG(p ⇒ AFq) write p --> q

Project co-financed by European Union within European Social Fund

